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Recently, there has been a renewed interest in the development of high energy Li-Air batteries.  
One configuration involves the use of a Li anode in a non-aqueous electrolyte, which is separated 
from an aqueous electrolyte containing the air cathode by a solid state Li-ion conducting 
membrane.  Several solid state polycrystalline Li-ion conductors, based on pervoskite (1,2), 
garnet (3,4) and NASICON (Na super ion conductor) (5 through 12) structures, are under 
consideration as possible membrane materials.  One of most widely investigated crystalline Li-
ion conducting membrane materials, based on the NASICON structure, is LiTi2(PO4)3 (5 through 
10).  In order to sinter crystalline LiTi2(PO4)3 to the high relative densities required for use as a 
membrane and increase Li-ion conductivity, two approaches have been undertaken (5 through 
10).  The first it to use a doped material, LiMxTi2–x(PO4)3 (where M=Al, Sc, Y and La) 
(5,6,9,10).  The second is to use LiTi2(PO4)3 containing a small amount of Li2O or Li3PO4 or 
Li3BO3 (5,7,8).  Previous investigations have suggested the total Li-ion conductivity, based on 
analysis of ac impedance data, of M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and La) and 
LiTi2(PO4)3 containing a small amount of Li2O or Li3PO4 or Li3BO3 was controlled by Li-ion 
grain boundary conductivity, which is about 1 to 2 orders of magnitude lower compared to Li-ion 
bulk conductivity (5 through 10).  It has been suggested that for both polycrystalline M-doped 
LiTi2(PO4)3 (where M=Al, Sc, Y and La)  and LiTi2(PO4)3 containing a small amount of Li2O or 
Li3PO4 or Li3BO3, that both approaches lead to the formation of a continous amorphous film 
around the grains (5 through 10).  It is the transport of Li-ions through this amorphous film 
which controls the sintering rate (i.e., densification) and grain boundary Li-ion conductivity, and 
hence, total Li-ion conductivity of the material (5 through 10).   

This Technical Note suggests an alternative interpretation of what controls Li-ion grain boundary 
conductivity in polycrystalline M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and La) and 
LiTi2(PO4)3 containing a small amount of Li2O or Li3PO4 or Li3BO3, based on the existing 
experimental data for these materials and a comparison to recent results for polycrystalline 
oxygen-ion conducting membranes.  This result has implications not only for increasing the total 
Li-ion conductivity of NASICON based Li-ion conductors but, also for polycrystalline Li-ion 
conductors based on pervoskite and garnet structures where the total Li-ion conductivity is also 
controlled by grain boundary Li-ion conductivity (1 through 5).  

For the case of polycrystalline M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and La) and 
LiTi2(PO4)3 containing a small amount of Li2O or Li3PO4 or Li3BO3, it is postulated that the 
reason for the low grain boundary Li-ion conductivity is not due to Li-ion transport through the 
grain boundary amorphous phase as previously suggested but, instead is through grain to grain 
contact where the resistance is determined by a space charge region associated with the grain 
boundary.  The presence of the amorphous phase serves only to reduce the amount of grain/grain 
contacts, as shown in figure 1 (13).  Evidence to support the above claim is as follows: 

Firstly, no conclusive microstructural evidence for an amorphous phase along grain boundaries 
in polycrystalline M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and La)  and LiTi2(PO4)3 containing 
a small amount of Li2O or Li3PO4 or Li3BO3  materials exists (5,7,9).  For example, scanning 
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electron micrographs do not reveal any rounding of grain corners at multiple grain junctions 
(7,9), which is typical for material containing an amorphous boundary phase (14 through 16).  
Furthermore, no transmission electron micrographs showing evidence of an amorphous phase 
along the grain boundaries are presented.  

Secondly, if a grain boundary phase controls grain boundary conductivity, then the activation 
energy for grain boundary conductivity should be different for chemically different boundary 
phases (13,17 through 19,20).  This is in contrast to the experimental results where the activation 
for grain boundary conduction in the different M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and 
La) materials and LiTi2(PO4)3 containing a small amount different additives such as; Li2O or 
Li3PO4 or Li3BO3  all have nearly the same value (∼0.36 eV [5]).  

Thirdly, recent results for doped polycrystalline CeO2 and ZrO2 oxygen-ion conductors have 
shown that the oxygen-ion grain boundary conductivity is 2 to 3 orders of magnitude lower than 
for bulk oxygen-ion conductivity (13,19), in agreement with the results for M-doped LiTi2(PO4)3 
(where M=Al, Sc, Y and La) materials and LiTi2(PO4)3 containing a small amount of Li2O or 
Li3PO4 or Li3BO3 materials.  For the case of these oxygen-ion conductors, detailed electron 
microscopy revealed clean grain boundaries (no amorphous phases along the boundaries).  Any 
amorphous phase was located at triple junctions and not along grain boundaries.  Thus, the 
presence of an amorphous phase along the grain boundaries is not required to account for low 
grain boundary ionic conductivity compared to bulk ionic conductivity.  Maier et al., (13,17 
through 19) have suggested that the major reason for the low grain boundary ionic conductivity 
in these materials is a result a space charge effect associated with grain boundaries compared to 
the bulk, where no space charge exits.  The presence an amorphous phase serves only to reduce 
the fraction of grain/grain contacts (figure 1).  The space charge model has successfully 
predicted the ratio of grain boundary conductivity/bulk conductivity, activation energy for grain 
boundary diffusion and the effect of aliovalent cation dopants on grain boundary conductivity in 
the doped polycrystalline CeO2 and ZrO2 oxygen-ion conductors (13,19).  
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Figure 1.  Schematic diagram of grain boundaries showing:  a) amorphous  
phase and b) grain to grain contact (13). 

In conclusion, from microstructural evidence similar values of the activation for grain boundary 
conductivity of the LiTi2(PO4)3 material with different dopants and second phase materials, and 
from recent results on doped polycrystalline oxygen-ion conductors, where no amorphous phases 
along grain boundaries were observed, whose lower grain boundary oxygen-ion conductivity to 
bulk oxygen-ion conductivity can be explained by a space charge model, it is highly likely that 
the low value of Li-ion grain boundary conductivity compared to bulk Li-ion conductivity, 
reported previously in crystalline M-doped LiTi2(PO4)3 (where M=Al, Sc, Y and La) and 
LiTi2(PO4)3 containing a small amount of Li2O or Li3PO4 or Li3BO3 materials, is through direct 
grain to grain contact where the resistance is controlled by a space charge region associated with 
the grain boundaries and not a result of an amorphous phase along grain boundaries, as 
previously suggested.  The presence of any amorphous phase serves only to reduce the amount of 
grain/grain contacts.  To conclusively confirm this suggestion, a very detailed investigation 
relating microstructure to conductivity in high density pure polycrystalline LiTi2(PO4)3  and 
LiTi2(PO4)3 containing a second phase is required.  The results of this Technical Note have 
implications not only for increasing the total Li-ion conductivity of NASICON based Li-ion 
conductors but, also for polycrystalline Li-ion conductors based on pervoskite and garnet 
structures, where their total Li-ion conductivity is also controlled by grain boundary Li-ion 
conductivity.  
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